Atomised Routing

Patrick Verkaik, Andre Broido, kc claffy

CAIDA / NLnet Labs / RIPE NCC

http://www.caida.org/projects/routing/atoms/

work in progress

Motivation

- Observation: many prefixes share AS path in all RouteViews peers
- BGP policy atom: set of prefixes that share AS path
- Routed the same (to a large degree)
- 1 March 2003 RouteViews data:
 - around 31000 atoms
 - covering around 117000 prefixes
 - (and 15000 ASes)
- 2002 study by Tel Aviv University (RIPE data):
 - in 8 hours only 2-3% of prefixes change atom membership
 - in 1 week 14% change atom membership

Apply to today's routing?

- Summarise prefixes of atom into one routing entry
- Incorporate into BGP

Possible benefits:

- Perform routing computations per atom, not per prefix
- Shrink routing table and FIB size in default-free routers
- Hide updates to prefixes (abstraction, compare: CIDR aggregation)

Architecture

- Group prefixes into atoms
- Route and distribute atoms in modified BGP
- Deployment

Architecture — Create Atoms

- To be declared by origin ASes
- These ASes partition prefixes into atoms and announce
- Other ASes must agree to route prefixes the same
- Prefixes can be IPv4 or IPv6

Architecture — What is an atom?

Architecture — Routing and Distribution

Protocol has two functions:

- Atom routing
 - Atom is represented by an atom ID (syntactically a prefix)
 - BGP routing computations on these atom IDs
- Atom distribution
 - Distributes mapping of atom ID <-> prefix
 - BGP extension (or another protocol)
 - Light-weight: no BGP routing computations
 - No delayed convergence for withdrawals?

Architecture — Routing and Distribution

Atomised router Atom ID **Prefixes A**1 P1 P2 P3 refixes for A1 announce A1 A2 announce A1 • • • withdraw A1 **BGP** Decision Process route for A1 announce A1 FIB +RIB

Announce atom Announce A1 Withdraw Atom attrib P1 P2 P3 Withdraw Announce Withdraw A1 Atom attrib

Architecture — Deployment

- Testing and incremental deployment: islands
 - Confine atomised routing to an island
 - Incremental deployment: grow the island

Implementation

Preliminary implementation of atomised routers

- In Zebra: free routing software (GNU license)
- Atoms declared using router configuration language
- Slightly different version of attributes

Unresolved issues

- Many policies not in AS path!
- Handling link failures
 - Atom splits, or
 - Use reachability bits
- Atom distribution convergence
 - During convergence mappings of neighbours inconsistent
 - Router needs mapping per neighbour
 - Decision process to resolve mapping conflicts
- Scalable atom computation possible?

Questions we have

- Importance of table size?
 - Entries vs bytes vs dynamics
 - FIB / RIB
- Do routers intelligently handle 'equivalent' prefixes?
- Encapsulation: how inefficient?

Questions?

Acknowledgements

Andrew Partan
Bill Woodcock
Cengiz Alaettinoglu
Daniel Karrenberg
Dave Meyer
Evi Nemeth
Frances Brazier
Frank Kastenholz
Henk Uijterwaal
Maarten van Steen
Nevil Brownlee
Omer Ben-Shalom
Ronald van der Pol
Ted Lindgreen
Teus Hagen
Wytze van der Raay

http://www.caida.org/projects/routing/atoms/

Geoff Huston

Shrinking Table Sizes in Default-Free Routers

- Edges of island:
 - carry all prefixes
 - contain atom ID <-> prefix mapping
 - encapsulate IP packets outer address is based on atom ID
- Routers inside island:
 - only carry atom IDs
 - can be unmodified BGP implementations (since atom ID looks like a prefix)

