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Abstract. Boolean functions are used as nonlinear combining functions
in certain stream ciphers. A Boolean function is said to be correlation
immune if its output leaks no information about its input values. Bal-
anced correlation immune functions are called resilient functions. Finding
methods for easy construction of resilient functions with additional prop-
erties is an active research area. Maitra and Pasalic [3] have constructed
8-variable 1-resilient Boolean functions with nonlinearity 116. Their tech-
nique interlinks mathematical results with classical computer search. In
this paper we describe a new technique to construct 8-variable 1-resilient
Boolean functions with the same nonlinearity. Using a similar technique,
we directly construct 10-variable (resp. 12-variable), 1-resilient functions
with nonlinearity 488 (resp. 1996). Finally, we describe some results on
the construction of n-variable t-resilient functions with maximum non-
linearity.
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1 Introduction

Boolean functions have many applications in computer security practices includ-
ing the construction of keystream generators based on a set of shift registers.
Such a function should possess certain desirable properties to withstand known
cryptanalytic attacks. Four such important properties are balancedness, correla-
tion immunity, algebraic degree and nonlinearity. The maximum possible nonlin-
earity for n-variable functions is known only for even n and equals 27! — 2% 1
Functions achieving this nonlinearity are called bent and were introduced by
Rothaus [6]. Correlation immune functions were introduced by Siegenthaler [§],
to withstand a class of “divide and conquer” attacks on certain models of stream
ciphers. He also investigated the properties of Boolean functions with correla-
tion immunity. Recently, a nontrivial upper bound on the nonlinearity of re-
silient functions was obtained by Sarkar and Maitra [7]. They proved that the
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nonlinearity of n-variable (n even) t-resilient function is less then or equal to
2nl 2571 2t (resp. 271 —2FL)if t + 1< 2 — 1 (resp. t+1> 2 —1). A
similar kind of result has been presented independently by Tarannikov [9] and
Zheng and Zhang [11]. Construction of resilient Boolean functions achieving the
upper bound on nonlinearity is an important research area. Maitra and Pasalic
[3] have constructed 8-variable 1-resilient Boolean functions with nonlinearity
116. In this paper, we describe a new technique to construct other 8-variable
1-resilient Boolean functions with nonlinearity 116. We start with an 8-variable
bent function f and suitably change some bits in the output column of the
truth table of f to get our 8-variable 1-resilient function with nonlinearity 116.
Furthermore, using a similar technique, we directly construct 10-variable (resp.
12-variable), 1-resilient functions with nonlinearity 488 (resp. 1996). Finally we
provide some results on the construction of n-variable t-resilient functions with
maximum nonlinearity.

2 Preliminaries

Let n be any positive integer. An n-variable Boolean function is amap f : {0,1}"—{0,1}.
These functions play a major role in stream cipher cryptosystems. Boolean func-

tions are used in many different binary keystream generators based on LFSRs.

Their purpose in the keystream generators is often to destroy the linearity in-
troduced by the LFSRs. An n-variable Boolean function f(z1,z2,...,%,) can

be represented as multivariate polynomial over GF'(2). That is, f(x1,%2,..., %)

can be written as

n
ap + E a;x; + E Qi Ti%5 + ...+ 012, . T1T2 . . . T,
i=1 1<i<j<n

where the coefficients ag, aj, . .., a12.., € GF(2) and the addition and multipli-
cation operations are in GF'(2). A truth table lists the function output value for
all possible inputs.

In the cryptographic applications there are several properties of Boolean
functions that are interesting to investigate. We now discuss some important
properties of Boolean functions for stream cipher application.

Definition 1. An n-variable Boolean function f(X) is balanced if the output
column in the truth table contains an equal number of 0’s and 1’s.

Definition 2. The algebraic degree, or simply degree, of a Boolean function
f(X) is defined to be the number of variables in the highest order product of
f(X), when f(X) is written in algebraic normal form. The algebraic degree of
f(X) is denoted by deg(f)-

Let F, be the set of all Boolean functions in n variables. Let F» = GF(2).
The Hamming distance between two functions f(X), g(X) € F,, is defined as,

u(f,9) = {X | F(X) #9(X), X € F'}.



Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. Let A, be the set
of all affine functions in n variables.

Definition 3. We define the nonlinearity of a Boolean function f(X), denoted
by Ny, as the Hamming distance to the nearest affine function, i.e.,

N; = min d .
s = min u(f,9)
This measure of nonlinearity is related to linear cryptanalysis [4].

In most of the cryptographic applications, we would like that the corre-
lation between an individual input variable and an output variable is small.
Siegenthaler [8] introduced the concept of correlation immunity of combining
functions for nonlinear combined stream ciphers, and investigated the proper-
ties of Boolean functions with correlation immunity. The purpose of introducing
correlation-immune functions as nonlinear functions for stream cipher is to spare
them from the “divide and conquer” attack.

Definition 4. An n-variable Boolean function is defined to be t-th order cor-
relation immune, if for any t-tuple of independent identically distributed binary
random variables X;, , X;,,...,X;,, we have

(X, Xiny oo, Xi3,3Y) =0, 1<i1 <ia<...<4 <m,
where Y = f(X1,Xs,...,X,), and I(X;Y) denotes the mutual information.

A Boolean function that is both balanced and ¢-th order correlation immune is
called a t-resilient function.
The properties above are often investigated through the Walsh transform.

Definition 5. Let f(X) be an n-variable Boolean function. Let us consider
X = (#1,22,...,2,) and w = (w1,ws,...,wy) both belonging to {0,1}" and
X -w=1z1w ®Tows @ ... D Tpwy. Then the Walsh transform of f(X) is a real
valued function over {0,1}", which is defined as

W)= Y (/e

Xe{0,1}n

The Walsh transform is sometimes called the spectral distribution or simply the
spectrum of a Boolean function.

The Hamming distance between a Boolean function f(X) and an affine function
9(X) = X -w+b, where b € F, can be calculated with the Walsh transform as

(=1)'W; ()

dH(fag):2n_1_ 9



Thus, the nonlinearity of f(X) can be obtained from the Walsh transform as

_ 1
Nf =2" L 5m3,x|Wf(w)|

A function f of n variables is called bent if Wy(w) = £2% for all w € {0,1}".
In other words, an n-variable function is called bent if Ny = 21 — 251
These functions are important in both cryptography and coding theory since
they achieve the maximum possible nonlinearity.

Xiao and Massey [10] gave a spectral characterization of Boolean function
with correlation immunity. Here we state this characterization as a definition of
correlation immunity.

Definition 6. A Boolean function f is t-th order correlation immune (CI) iff
its Walsh transform W satisfies

Wi(w) =0 forall we Fy'; 1<wt(w)<t,

where wt(w) is the Hamming weight of the binary string w. Furthermore, if f
is balanced then W;(0) = 0. Balanced ¢-th order correlation immune functions
are called t-resilient functions.

Thus, a Boolean function f is t-resilient iff its Walsh transform W satisfies

Wi(w) =0 forall we Fy'; 0<wt(w)<t.

We now recall the definition and some properties of perfectly nonlinear func-
tions for later use. Let f be a function from abelian group (A, +) of order n to
another abelian group (B, +) of order m. A robust measure [5] of the nonlinear-
ity of functions is related to differential cryptanalysis [1] and uses the derivatives
D,f(z) = f(z + a) — f(z). It may be defined by

§ = Jmax, max r(Do f(z) =b),
where Pr(E) denotes the probability of the occurrence of event E. The smaller
the value of Py, the higher the corresponding nonlinearity of f (if f is linear,
then Py = 1).

Definition 7. A function f : A—B has perfect nonlinearity if Py = Bl

Definition 8. A function g : A—B is balanced if the size of g~!(b) is same
for every b € B.

Theorem 1. A function f : A— B has perfect nonlinearity if and only if, for
every a € A* = A — {0}, the derivative D, f is balanced.

Theorem 2. (Carlet and Ding [2]) Let f : (A, +)— (B, +) have perfect nonlin-
earity, and let I : (B,+)—(C,+) be alinear onto function. Then the composition
lo f is a function from (4, +) to (C, +) with perfect nonlinearity.

In the case of Boolean functions, perfect nonlinear functions are called bent.
For a general survey of perfectly nonlinear functions one can refer to Carlet and
Ding [2].



3 Construction of Bent Functions

In this section, we describe a method to construct n-variable (n even) bent
function.

Lemma 1. Let n and m be any positive integers, where m divides n. Let
g: F2%n —>F2m

and .

f=Tr(g): Fon—F
where T'r is the trace function from Fbm to F». If g is perfectly nonlinear, then
f is an n-variable bent function.

Proof: Since g : Fﬁn —Fym is perfectly nonlinear function and Tr : Fom —F3

is a linear onto function, the composition T'r(g) is a bent function from Fﬁn to
F,. Tt follows from Theorem 2.

The bent functions we will use in Theorem 3 and Theorem 4 can be obtained
using Lemma 1.

Ezample 1. Let n = 8, m = 4 and g(X1,X2) = X1 X where X; € Fpa. It is
known that g is a perfectly nonlinear function. For detail see Carlet and Ding
[2]. We use primitive polynomial z* + = + 1 to generate all the elements of the
field Fy+. By using Lemma 1, we get an 8-variable bent function f(X;,X3) =
Tr(g(X1,X>)) as follows:
0000000000000000010101011010101000001111000011110101101010100101
0011001100110011011001101001100100111100001111000110100110010110
0101010101010101000000001111111101011010010110100000111111110000
0110011001100110001100111100110001101001011010010011110011000011.

It has nonlinearity 120 and weight 120.

Ezample 2. Let n = 10, m = 5 and ¢g(X;,X2) = X; X2 where X; € Fys. Here

we consider primitive polynomial 1+ 2® + 2% to generate all the elements of the

field Fys. Then, by Lemma 1, we get a 10-variable bent function f as follows:
0000000033CC33CC5A5A5A5A699669963333333300FF00FF696969695AA55A A55555555566
9966990F0F0F0F3CC33CC36666666655AA55AA3C3C3C3COFFO0FF00000FFFF33CCCC33
5A5A5A5699696693333CCCCO0FFFF00696996965AA5A55A5555A AAA669999660F0FFOF0
3CC3C33C6666999955AAAA553C3CC3C30FFOF00F. To save space we represent

f in hexadecimal format. Note that, f has nonlinearity 496 and wt(f) = 496.

Later we will use bent functions of this type to construct our resilient func-
tions.

4 Construction of 1-resilient Functions
4.1 Construction of 8-variable 1-resilient Functions with
Nonlinearity 116

We now show how to construct an 8-variable 1-resilient function with nonlinear-
ity 116 using an 8-variable bent function f.



Theorem 3. Let S; = {(0,0,0,0,0,0,0,1),(0,0,0,0,0,0,1,0), (0,0,0,0,0, 1,0,0),
(0,0,0,0,1,0,0,0), (0,0,0,1,0,0,0,0), (0,0,1,0,0,0,0,0), (0,1,0,0,0,0,0,0),
(1,0,0,0,0,0,0,0)} and S» = {(0,0,0,0,0,0,0,0),(1,1,1,1,1,1,1,1)}. Let f be
an 8-variable bent function such that f(X) = 0for all X € S;U{(0,0,0,0,0,0,0,0)}
and f(1,1,1,1,1,1,1,1) = 1. Let us construct f’ as follows:

, _[fX)®el fXeSUS
Fx)= { f(X) otherwisé :

Then f'is an 8-variable 1-resilient function with nonlinearity 116.

Proof. Let h : {0,1}"—{0, 1} be a Boolean function and C' C {0,1}"™. Then
we define p{'(h) = {X € C ; h(X) = 1}| and p§ (h ) {X € C; h(X) =0}
Let A = {0,1}%, S = S;US; and S = {0,1}® — S. It may be noted that,
PP(fOX -w) =pd(f®X -w) and p5(f & X - w) = p5(f' ® X - w) for all
w € {0,1}3.

Let wt(w) € {0,1}. We verify from Table 2, that p7(f ® X -w) = 1 and p{ (f' ®
X-w)=9.80,wt(f® X-w)=p{(f® X -w)=p (fOX -w)+p{(fOX -w) =
PP (f @ X -w) 4+ 1 = 120 implies py (f @ X -w) = 119. Thus wt(f' & X -w) =
pfreoX -w=pfeX w+p(foX w=p/(foX w+9 =128
Hence f' is 1-resilient. It only remains to prove that f’ has nonlinearity 116.
The nonlinearity of f' can be obtained from the Walsh transform as

1
Ny =27 — 5 max [Wy (w)].

We now recall Definition 5 and write W;(w) = pgi(f & X -w) — pi(f & X - w)
where A = {0,1}%. To find max,, |Wy (w)|, we consider the following cases:

Case 1: Let wt(w) € {0,1}. Since f' is 1l-resilient, f' ® X - w is balanced. Hence
We(w) = 0.

|S.N.|x1 |x2|x3|$4|x5|w6|$7|$8|f(X)| f'(X)|

0 |(0|j0jO|0OjOj0O|0O]|O] O 1
1 10[0{0|0/0|0(0|1] O 1
2 (0(0|0|0|0O|Of1|0] O 1
4 |0/0j0|0j0O]|1|0O|0]| O 1
8 (0(0]0|0|1{0|0|0] O 1
16 |{0]0|0(1{0{0|0]|0] O 1
32 (0j0j1{0|0|O|OfO| O 1
64 |(0(1{0(0|0|0|0O|0O| O 1
128 {1|10|0(0{0(0]0]|0] O 1
255 | 1|1|1|1)1|1|1|1| 1 0

Table 2: Table shows the values of f(X) and f/'(X) for X € S.



Case 2: Let wt(w) € {2,3}. It is know that, We verify from Table 2, that
pf(fOX -w)=3and pf(f'® X -w) ="7. and p(f' ® X - w) = 7. The Walsh
transform of f, Wy (w) = pg (fOX -w)—pi(fOX -w) = [p5 (fOX w)+p5 (fOX-
W)= [pf (fOX w)+p7 (fOX w)] = [p5 (f 8 X -w)+ 7] = [pf (fOX -w)+3] = £16.
Hence [p5 (f & X -w)—p{ (f ®X -w)] € {—20, +12}. Thus, the Walsh transform of
f, Wi w) =5 (f'oX w)+p5 (& X -w)]=[pf (f & X -w)+pf (f&X w)] =
[{P§(£'®)§'w)+3]—[Pf(f'69X-W)+7] =pf(foX -w-p(feX w]-4€
—24, +8).

Case 3: Let wt(w) € {4,5}. Here p7(f ® X -w) = 5 and p{ (f' ® X -w) = 5.
Thus the Walsh transform of f/, Wy (w) = £16.

Case 4: Let wt(w) € {6,7}. Note that, pf (f ® X -w) = 7 and pf (f'© X -w) = 3.
So, the Walsh transform values of f', Wy (w) € {-8,+24}.

Case 5: Let wt(w) = 8. It’s easy to check that the Walsh transform value is —16
and, p? (f® X -w) = 9 and p7 (f' ® X -w) = 1. So, Wy(w) = [p5 (f & X -w) +1] -
[p7 (f © X - w) + 9] = —16 implies [p5 (f ® X - w) — pf (f © X - w)] = —8. Thus,
the Walsh transform of f/, Wy (w) = [p§ (f' @ X -w) +9] = [pf (f & X -w) +1] =

(5 (f & X -w) = pi(f & X -w)] +8=0.
So max, |[Wy (w)| = 24 and Ny = 27 — 12 = 116. Hence the theorem follows.

We now indicate our basis for the choice of the elements of S in Theorem 3.
We choose the elements of S in two steps. First we select the set S; and construct

[fX)®1 fXeS
h(X) = {f(X) otherwisé

Note that f; is balanced but wt(fi @& X;) = 126 for all 4. To make wt(f; ® X;) =
128, keeping balancedness property unaffected, we finally choose the set Sy and

construct f( ) ¢ s
' _ (X))l if X el
Fi(X) = { f1(X) otherwise ’

Note that f' is balanced as well as wt(f’ + X;) = 128 for all . We mention that
the bent function of Example 1 can be used in Theorem 3.

4.2 Construction of 10-variable (resp. 12-variable) 1l-resilient
Functions with Nonlinearity 488 (resp. 1996)

In this section, we construct a 10-variable 1-resilient function with nonlinearity
488, by using the same technique as in the construction of 8-variable 1-resilient
functions with nonlinearity 116.

Theorem 4. Let S; = {(0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0, 1),
(0,0,0,0,0,0,0,0,1,0), (0,0,0,0,0,0,0,1,0,0), (0,0, 0,0,0,0, 1,0,0,0), (0,0,0,0,0,1,0,0, 0, 0),



(0,0,0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0,0,0),
(1,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,1, 1), (0,0,0,0,0,0,0,1,1,0), (0,0,0,0,0,0,1,1,0,0),
(0,0,0,0,0,1,1,0,0,0), (0,0,0,0,0,1,0,0,0,1), (0,0,0,1,1,0,0,0,0,0), (0,0,1,1,0,0,0,0,0, 0),
(0,1,1,0,0,0,0,0,0,0),(1,1,0,0,0,0,0,0,0,0), (1,0,0,0,1,0,0,0,0,0), (1,1,1,1,1,1,1,1,1,1)}
and S» = {(0,0,0,0,1,0,1,0,0,1), (1,1,1,1,0,1,0,1,1,0), (0,1,0,0,1,0,0,0,0,1),
(1,0,1,1,0,1,1,1,1,0)}. Let f be a 10-variable bent function such that f(X) =10

for all X € S; — {(1,1,1,1,1,1,1,1,1,1)} and f(X) = 1 for all X € Sy U
{(1,1,1,1,1,1,1,1,1,1)}. Let us construct f’ as follows:

i JfX)®1 ifXeSUS
F&) = {f (X) otherwisz ’

Then f’ is a 10-variable 1-resilient function with nonlinearity 488.

Proof: The proof of the present theorem is similar to that of Theorem 3. Note
that wt(f © X - w) = 496 for all w such that wt(w) € {0,1}. Table 3 shows the
values of f(X)and f/(X) forall X € S.Let A= F1°, § = S;US;and S = A-S.

Let wt(w) € {0,1}. We see from Table 3, that p7 (f & X -w) = 5 and p{ (f' & X -
w) = 21. Then wt(f®&X -w) = p; (FOX -w)+p7 (FOX -w) = p{ (fFOX -w)+5 = 496
implies p?(f ® X - w) = 491. Moreover, p7 (f ® X -w) = pf (f' ® X - w) for all
w € {0,1}1% Thus wt(f'®@ X -w) = p{ (f X -w)+p? (f' X w) = p7 (f)+21 =
512. Hence f' is 1-resilient.

The nonlinearity of f' can be obtained from the Walsh transform as
Ny =2° = L i | W ().
! 5 max |Wy

It is known that, Wy (w) = £32 for all w € {0,1}!°. To find max,, |W (w)|, we
consider the following cases:

Case 1: Let wt(w) € {0,1}. Since f' is 1-resilient, f’' @ X - w is balanced. Hence
Wfl (w) =0.

Case 2: Let wt(w) € {2,3,...,10}. We verify from Table 3, that pf(f ® X -
w) € {5,7,9,11,13,15,17,19}. Let £ = {w; p{(f ® X -w) = 5,7} and 2, =
{w; pP(f ® X -w) = 19}. It can be verified that Wy(w) = +32 for w € 4
and W;(w) = =32 for w € . If p7(f ® X -w) = 5, then Wy (w) = [p5(f & X -
W +p(fOX-W=[p(fOX w+p7(foX -w)=[p5f®X w)+21]-
[p7 (f ® X -w) +5] = +32. Hence [p5 (f & X -w) — p7(f ® X -w)] = +16 and the
Walsh transform of f/, Wy (w) = [p5(f' ® X -w) + 5] — [pf (f' & X -w) +21] =
5 (f® X -w)—p? (f® X -w)]—16 = 0. Similarly, if p{ (f ® X -w) = 7 (resp. 19),
then Wy (w) = +8 (resp. —8). Otherwise, if p7 (f & X - w) € {9,11,13,15,17},
then the Walsh transform of f', Wy (w) € {£16,+24, +32, £40, £48}.

So max,, |Wy (w)| = 48 and Ny = 29 — 24 = 488. Hence the theorem follows.
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0/0{0({0|0f0 0(0]0
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32
64
128
256
512
1023
3
6
12
24
17
96
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384
768
544
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982
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734
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0
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Table 3: Table shows the values of f(X) and f'(X) for X € S.

We now indicate our basis for the choice of the elements of S in Theorem 4.
First we select the set S; and construct

[fX)@1 ifXeS
h(X) = {f(X) otherwisiz

It may be noted that f; is 1-resilient but wt(f1) = 516. Now to make f; balanced,
keeping the resiliency property unaffected, we choose the elements of Sy by
computer search and construct

_[AX)®1 fXeS
F(X) = { fi(X) otherwisz ’

The bent function of Example 2 can be used in Theorem 4. If we list the elements
of S as the rows of a matrix M, then in each column of M, 1 occurs the same
number of times. The M matrix necessarily satisfies this condition to get a 1-
resilient function.

We construct a 12-variable 1-resilient function with nonlinearity 1996, by
using the same technique as in the construction of 8-variable and 10-variable



resilient functions. Let n = 12, m = 6 and g(X1, X2) = X1 X2 where X; € Fys.
We use primitive polynomial 1+ z + 2 to generate the elements of the field Fys.
Then, by Lemma 1, we get a 12-variable bent function f with f(1,1,1,...,1) = 1.
Here, we consider S = {(000), (001), (002), (004), (008), (010), (020), (040),
(080), (100), (200), (400), (800), (FFF), (003), (005), (006), (009), (004), (00C),
(011), (012), (014), (018), (021), (022), (024), (028), (030), (0C0), (140), (180),
(240), (280), (300), (440), (480), (500), (600), (840), (880), (900), (A00), (C00),
(043), (FBC), (045), (FBA), (049), (FB6), (060), (F9F), (066), (F99)}. To
save space we present the elements of S in hexadecimal format.

Maitra and Pasalic [3] have constructed a 10-variable (resp. 12-variable) 1-
resilient function with nonlinearity 488 (resp. 1996) by suitably concatenating
8-variable 1-resilient functions with nonlinearity 116. But our construction is
not based on concatenation and we believe one can construct 10-variable (resp.
12-variable) 1-resilient functions with maximum nonlinearity 492 (resp. 2012) by
choosing an appropriate S. In the following section, we focus on selection of the
elements of S.

5 Some General Results

Lemma 2. Let f be an n-variable (n even) bent function, and let S C {0,1}",
such that

Q) p3(fOX -w)—p(f® X -w) =251 for all w such that 0 < wt(w) < 1,

(i) =22 < pf(fe X -w)—pf(fe X -w) < +2% +22 for all w whenever
2 < wt(w) < n and Wy(w) = +2% and

(iil) —(27 +2) < p5(f® X -w) — p7 (f ® X -w) < +2% for all w whenever
2 < wt(w) < n and Wy(w) = —23.

Hhen fX)y®e1l ifXeS
' _ ® 1 €
Fix)= { f(X) otherwise

is an n-variable 1-resilient function with nonlinearity 271 — 221 — 22,

We shall illustrate Lemma 2 by Theorem 3 and Theorem 4. It is easy to verify
that, in Theorem 3, S satisfies conditions (i), (ii) and (iii) of Lemma 2. So f’
of Theorem 3 is an 8-variable 1-resilient function with maximum nonlinearity.
Let us consider Theorem 4. It can be verified that, p?(f ® X - w) = 9 (resp. 17)
for some w such that 2 < wt(w) < 10 and Wy(w) = —32 (resp. Wy(w) = +32).
That is, p5 (f ® X -w) — pf (f ® X -w) = +8 (resp. —8) for some w such that 2 <
wt(w) < 10 and Wy(w) = —32 (resp. Wy(w) = +32). Which violates condition
(iii) (resp. condition (ii)) of Lemma 2. It may be noted that, f' of Theorem 4 is
a 10-variable 1-resilient function but not with maximum nonlinearity. In general
we have the following lemma.

Lemma 3. Let f be an n-variable (n even) bent function, and let S C {0,1}",
such that



() p§(f®w.X) — pf(f ®w.X) =22 for w such that 0 < wt(w) < ¢,

(ii) =2 < pS(fO X -w) — pf (f ® X -w) < +22 + 28! for all w such that
t+1<wt(w) <n and Wy(w) = +2% and

(iii) —(22 + 2 < p5(f @ X -w) — p? (f® X -w) < +28*1 for all w such that
t+1 < wt(w) <nand Wy(w) = —2%.

Then
fX)®l ifXeS

F'(X) = { f(X) otherwise

is an n-variable t-resilient function with nonlinearity 271 —22 1 -2+l ift4+1 <
n

n_q

n_1.

6 Conclusions

We have considered the construction of 1-resilient functions with maximum non-
linearity. We have constructed 8-variable 1-resilient functions with maximum
nonlinearity. Moreover, we have constructed 10-variable (resp. 12-variable), 1-
resilient functions with nonlinearity 488 (resp. 1996). The new construction is
based on selecting a number of elements S. However we mention that we do not
have any good algorithm to generate the elements of S. The method mentioned
to construct the three Boolean functions may be generalized and that is our
future course of research. It is also interesting to investigate the propagation
characteristics of these functions.
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