
TimeWalker, a tool to visualize eventdata
Theo de Ridder
Pim Buurman

E-mail: Theo.de.Ridder@wxs.nl

1. Introduction
Many systems produce huge amounts of timestamped data (events) like logs from

systemcalls, time-series from network monitoring or transactions from database-
applications.
In practice eventdata is often thrown away without any inspection. Some of the main

reasons are: waste of resources, poor dataformats, non-scalability of traditional tools, lack
of an adequate visual instrument.
However, throwing away eventdata unseen implies losing essential information needed

to discover cause-effect relations within (un)wanted or (un)expected systembehaviour.
TimeWalker is a GPL-tool that makes preservation and disclosure of historical details
contained in eventdata attractive and feasible.
The architecture and user-interface are made very flexible and portable. TimeWalker is

implemented in Python (wxPython) and C. The first release will become available in
november 2001 for Win32 and Linux. In this release TimeWalker will work smoothly for
about 500000 records in memory that represent individual events or aggregated events
collected from much larger (GB) datasets.
Information about the actual state can be found at www.NLnet.nl/projects/Timewalker
and sourceforge.net/projects/timewalker. The development of TimeWalker is a project
funded by the Stichting NLnet.

2. Philosophy
TimeWalker is based on the following principles:
l Dom ain independence

It is impossible to optimize the visualization of a multidimensional space for all
dimensions without domain-knowledge. TimeWalker is concentrated on the time-
dimension, assuming that the human perception of time has common characteristics
for quite different domains. Optimizing only the time-dimension and handling the
other dimensions in a general purpose way is already far from trivial but worthwhile
because it enables a first look at unseen worlds behind the mysterious mountains of
eventdata.

l Inform ation visualization
The central mantra of information visualization states that one should always show

context and detail together. The following properties are due to applying this mantra
rather strictly:

¡ The information density is very high.
¡ All graphical views are visible in parallel.
¡ There is no scrolling in graphical views.
¡ Each tree-node indicates the number of its children.

l Universal Pythonized datam odel
Every element in TimeWalker is represented in Python sources or Python objects.

The pickle mechanism is used to make persistency of objects transparent, compact
and fast. An important benefit is that the deepest internal data-representation is

always rich and object-oriented. Conventional representations (database records,
HTML or XML) are only used in conversions from/to external formats.
Part of the unification is that all documentation is also represented within Python

and only transformed on the fly into a viewable html format.
l Rich defaults

Defaults for scaling and coloring are derived automatically from the data. The effect
is similar to what is offered by digital cameras: a quite reasonable contrast and
sharpness for the average case without the need for any specific user-action.

l Non-m odal fram es
The usage of modal popup-frames is avoided as much as possible. Changes and

errors are indicated at the actual spot until the user decides to cancel, commit or
correct.

3. Architecture

figure 1.
The architecture has 3 main layers (see Fig 1):
l Data

Any data within a running TimeWalker is originating from one of the following
places:

1. Python sources:
All on-line documentation is derived from these sources.

2. Raw data:
Raw data in any external can be imported or exported by using an existing

convertor or by creating a new one. Import conversion is yet implemented as a
simple but rather slow separate batch-process.

3. Persistent storage:
All eventdata is made persistent in .twd files in a unified pickled format.

Each file contains a generated header with a complete self-description about
content and context. The same format is also used for saving at any moment a
complete running state as a snapshot.

4. User input
User-input is enabled through editing (or drag-drop) cells of writable tables.

l Models
There 6 types of models:

1. Meta model
Any record-like data is modelled with a universal MetaRecord as run-time

descriptor for typing, accessibility and layout. MetaRecord is more abstract
than a class to enable representations of records that are extremely fast for
sequential access.

2. Data model
The basic data models are RecordList and EventList. RecordList is used to

model arbitrary data. EventList is a specialized RecordList that is immutable
and sorted on the required timestamp field. Data models do have an
underlying implementation in C to obtain high performance for huge amounts
of data.

3. Time model
The time model is the working horse of TimeWalker for aggregating and

transforming eventdata in sequences of equidistant time-intervals. It is based
on the concept a TimeShelve on which a pile of TimeBoxes is placed. The
shelve is responsible for shifting the pile along the time-line and for controlling
which subperiods of the zoomlens are to be calculated on the fly by each of the
boxes.

4. Tree | Table model
These models enable automatic mapping between arbitrary trees and

sequences in Python and the interfaces of the used widgets. This models
abstract from the peculiar properties of the used gui-library.

5. Source model
The Python sources are to be considered as a complete executable and

readable specification of TimeWalker. Because Python is a reflective language
a model for inspecting the sources comes almost for free.

6. Document model
The Python __doc__ string facility is exploited to represent all the manuals.

A simple grammar within a string exploits the Python tokenizer to obtain a
readable markup without using nested tags.

l View s
The various views are shown in 4 types of frames

1. Tree | Table frame
This type is for inspecting or changing data in tables with dedicated cell-

editors (see Figure 4).
2. Graphics frame

This type is only used for the graphical mainframe (see Figure 3) of the
application.

3. Tree | Html frame
This type is for browsing through documentation in a simple html

representation with links.
4. Tree | RText frame

This type is for browsing through the sources, shown with syntax-
highlighting.

4. Data handling
TimeWalker unifies arbitrary eventformats into a format that enables a much better

performance for persistent storage, aggregation and transformation than can be obtained
by using a (traditional) database.
Aggregation is the process of compressing arbitrary eventlists into a fixed-time interval

sequences (TimeBoxes) containing a single composite record in each interval. With user-
specified expressions important correlations can be preserved during aggregation.
Aggregated records are transformed with user-specified expressions into sequences of
vectors (ResultBoxes) which are plotted as colored beams.
The clean syntax and semantics of Python is used for all expressions at the user level.

Some specific internal techniques are used to improve the performance of the produced
byte-code drastically.
There are 3 types of aggregations:
l sim ple

The result is the tuple (min, max, first, last, sum, count) for each column.
l freq

The result is a frequency distribution of the values in a column with a limit on the
number of different values.

l keyed
The result is a combination of simple and freq for the (key, value) pairs returning

from a user-defined expression. This type is typical used for keeping some
correlations during aggregations. The effect is similar to what can be obtained with
GroupBy in SQL.

5. Visualization
TimeWalker uses an innovative technique for information-visualization along the time-

axis that enables simultaneous presentation of context and detail of eventdata in a range
from 40 years down to 50 milliseconds. The technique is based on a sliding hierarchical
ZoomLens that shows a bundle of multiple beams with predefined (quarter, week, day,
hour, 5 min, 15 sec, 1 sec, 50 ms) time-scales. The zoomlens can be shifted by hand or be
started as an animation.

Figure 2.
The functionality of the zoomlens is illustrated in figure 2. Each next level Ln+1 splits the

underlying level Ln in a left and a right part, without hiding anything. The total interval of
each Ln is indicated as tn[0]..tn[-1]. The subinterval of each Ln that is magnified in Ln+1 is

indicated as t'n[0]..t'n[-1]. The rule holds that t'n[-1] = tn+1[0] for each n>0. In other
words, one has to look just left of each Ln to see which part it magnifies.
Parallel with the zoomlens 4 other widgets are used to visualize time-correlations:

1. Calendar
This widget shows all days and weeks as small rectangles, each containing a

compressed image of 1 vertical vector selected in a Beam.
2. Epoch

This widget shows all quarters within 40 years, grouped in decades, in the same
way as Calendar shows days.

3. Clock
This widget has 2 functions:
¡ Show indicated time

The time corresponding with a mouse-position is shown continuously as text
within the clock at a fixed place. This is used in stead of static and space-
consuming textual scales.

¡ Show a 24 hours distribution
A vector selected in a Beam is aggregated and showed over the 24 daily hours.

4. Treemap
When an aggregation is keyed it is possible to show the aggregation as a treemap. A

treemap can be seen as a hierarchical pie-chart. The hierarchy is described by the
key (being a tuple), the value to be accumulated is the sum field of the aggregated
values.

Figure 3.
The graphical user-interface as a whole (see figure 3) is carefully designed for quick

pattern-recognition by a regular user. Each part has a fixed place, there is no scrolling, the
information density is high, scaling and coloring is automatic, and there is (almost) no
static and redundant (textual) information.
Apart from the graphical mainwindow there are also frames for textual browsing and

manipulating snaphots, data, documentation and sources. All textual navigation is based
on data-driven tree/table-grid (see figure 4.) combinations.

Figure 4.
Graphical and textual visualizations both scale up for realtime interactive manipulations

and animations of very large datasets.

6. Usage
TimeWalker introduces a new way of looking at eventdata of which the benefits are yet to

be validated in practice.
The learning curve will be short by starting given templates for domains that are well

known. Those templates are basically snapshots. A snapshot is a persistent representation
of a running state that enables continuation, exchange and reuse of any intermediate
result. In the first release there will be templates for logdata like syslog and wtmp. There
will be also a template that handles all files in a filesystem as events with their mtime as
timestamp. Applying this template on huge file-systems is intended to be an eye-opener
for the unexpected capabilities and added value of TimeWalker in a very familiar domain.
For external dataformats there is a general import/export dataconvertor class. Subclasses

for common formats that are line-based or XML-based are given as examples. First
experiences showed that creating and testing a new convertor can be realized within one
day by a Python programmer.
All parametrizing is table-driven, but can also be done by writing scripts. Table-

modifications are completely supported in the user-interface. Flexibility is obtained by

using Python-expressions in some of the table-entries. Those expressions are not
complicated as such, but making the right choices requires domain knowledge as well as
some experience with the resulting visual effects.
The aggregation-mechanism used for visualization can also be used for storing the

original data into a new persistent format that is compressed within one of the 8 available
time-scales. The trade-off is between the acceptability of a certain loss of information and
the ability to scale up into a GB range of events.

6. Some implementation aspects
The gui-library used is that of wxPython, but there is only a weak coupling with the

peculiar features of this library. All graphics that is crucial for performance is painted
within caches by simple bitblitting and line-drawing. Standard widgets are just
encapsulated in a Python-style. A more specific requirement is the availability of a tree
and a table widget that scale, enable drag/drop and have cells with in-place facilities for
editing. The behavior and portability of standard wimp-aspects is inherited from the used
library. The look-and-feel of the main graphical-window however is an invariant quality of
TimeWalker.
All persistent storage is based on the pickle-mechanism offered in Python. It was one of

the big surprises in using Python for huge amounts of data to discover the generality,
robustness, speed and compactness of dumping and loading data directly as semantic rich
objects.
A simple grammar, based on indentation and supported by any Python-aware editor, is

used for writing all documentation within docstrings. The format is very gentle for eyes
that do not like redundant brackets or tags. This way of integrating documentation can be
seen as a new incarnation of the old idea of literate programming. The on-line
documentation is generated from the docstrings in a html-widget on the fly without the
need to start up a separate browser.

References
[1] Christopher Alexander, "The Timeless Way of Building", Oxford University Press,

1979.
[2] S.K. Card, "Reading in Information Visualization, Using Vision to Think", Morgen

Kaufmann, 1999.
[3] J. Raskin, "The Humane Interface", Addison Wesley, 2000.
[4] D.M. Beazley, "Python Essential Reference", New Riders, 2000.
[5] M. Hammond, A. Robinson, "Python Programming on Win32", O'Reilly, 2000.
[6] Th.F. de Ridder, "Informatie Visualisatie als Beheerinstrument", IT beheer jaarboek

1999.

	page1
	page2
	page3
	page4
	page5
	page6
	page7

