
cP2Pc: Integrating P2P networks.

Ihor Kuz, Maarten van Steen

In the world of P2P file-sharing things are moving fast. New networks based
on new technologies keep appearing, while old ones are slow to disappear. Not
only is there growth with regards to the number of networks and the underlying
technologies used, but there is also growth in the application of these technologies.
Whereas the original growth around P2P networks was based on illegal sharing of
content, new (and future) applications tend to focus on legitimate distribution of
content. This includes distribution of free software, distribution of Web content,
implementation of streaming radio, etc. Nevertheless the basic model remains the
same - distribution or sharing of content.

The problem with all the various networks is that each creates its own sepa-
rate file space. There is no interoperability between networks, which results in no
content being shared between networks. As a consequence, a file made available
on one network can be found and accessed using programs that are tailored only
to that specific network. To access multiple networks, it is therefore necessary to
run multiple client programs. For example, a user who wants to publish a file on
Freenet, MNet and Gnutella must start three separate programs and publish the
file three times. Likewise a user looking for particular content may have to search
multiple networks—and access each with a different client—before the content is
found.

This is an undesirable situation that puts an unnecessary burden on end users.
Users are generally not interested on which network they share files, but it should
preferably be only one.

An approach to solving this problem is the creation of an ÜberClient as sug-
gested by Freenet’s Brandon Wiley [6]. An ÜberClient is a client application that
provides a single user interface but connects to multiple P2P networks. In this arti-
cle we present such an ¨ÜberClient. More importantly, however, we present a uni-
fying API to P2P file-sharing networks on which this client is based. This API adds
modularity to the ÜberClient by separating the user interface aspect from the net-
working aspect. We developed the API and its implementation in the cP2Pc project
(pronounced as “copy to PC”), of which the source code is publicly available under
an LGPL license and can be found at http://sourceforge.net/projects/cp2pc.

1



P2P File-sharing Networks

In order to develop an ÜberClient we need to integrate the functionality of various
existing P2P networks at the client level. This is possible only if the semantics of
the various networks are sufficiently similar.

In the cP2Pc project we’ve examined a number of file-sharing networks and
have distilled a model of the basic semantics of these networks. Not surprisingly,
the basic unit of data in this model is the file. A file-sharing network supports
four operations: Publish, Unpublish, Download, and Search. The Publish opera-
tion makes a file available to other users of the network. The Unpublish operation
makes a previously available file unavailable. The Download operation retrieves a
published file. The Search operation searches for published files which match a
given criteria.

Table 1 provides an overview of how these basic functions are implemented in
a number of existing file-sharing networks. We describe the networks briefly in the
sidebar.

A Unifying API

The cP2Pc API is a file-sharing API based on the above model. The API defines
functions for publishing, unpublishing and downloading a file. It also defines a set
of functions that can be used to search for files with specific characteristics.1 In
contrast to the user interfaces of many file-sharing applications, there is no func-
tionality for automatically publishing all the files in a given directory. Each file
must be separately published. Similar functionality can, however, be achieved by
monitoring a directory and publishing or unpublishing files as they are added or
removed.

The API also introduces the concept of collections. A collection is a group of
related files that can be published, unpublished, searched for and downloaded sep-
arately or as a single unit. Examples of files that may be published as a collection
include: tracks on an album, chapters in a book, files in a software distribution, etc.

The functions provided by the cP2Pc API are asynchronous, that is they return
immediately while results (as well as progress reports) are returned via callbacks.
This is necessary to create responsive clients, especially if a client must use multi-
ple networks simultaneously. Specific file-sharing network implementations of this
API are called components. Because some file-sharing networks do not support all
features of the model, it is possible that in some component implementations some
of the functions do not actually do anything (i.e., they have null implementations).

Currently we have built two cP2Pc network components, one for the GDN net-
work and one for Gnutella. The Gnutella component implements all the cP2Pc file
(publish, unpublish, download) and search functionality. It does not support func-
tions dealing with collections. The GDN component, on the other hand, imple-

1The search API is directly based on Tristero’s search API.

2



Table 1: A comparison of four file-sharing P2P networks

Network Operation Description
Gnutella Publish Local files are made available and can be down-

loaded from the client using HTTP.
Unpublish Local files are no longer available.
Download Files are downloaded using HTTP.
Search Search queries are broadcast out onto the network.

When a query arrives at a node, the node checks
whether it has any files that match the query.

Freenet Publish Files are inserted into the network. Copies of files
are placed on multiple nodes.

Unpublish Cannot explicitly unpublish a file. Files that are
rarely accessed “disappear.”

Download Given a file identifier a request is sent out onto the
network. If a file is found it is returned (again
through the network, not directly).

Search Can only search for a file given its identifier. There
are external search protocols written for Freenet.

GDN Publish Files are placed in an object, which may be repli-
cated.

Unpublish Files are removed from the object. The object may
be destroyed if it is no longer needed.

Download Files are retrieved from the object.
Search No search functionality.

CFS Publish Files are created in the file system using regular sys-
tem calls.

Unpublish Read only, so files cannot be deleted.
Download Files are opened and read using regular system calls.
Search Files can be found by browsing the file system. No

attribute based search.

3



Network

CP2PC API CP2PC API CP2PC API

Publish

Publish Publish

Gnutella

Publish

GDN NetworkMnet Network

CP2PC User Application

Figure 1: The organization of cP2Pc.

ments all the cP2Pc file and collection functionality. It does not, however, support
the search functionality.

An ÜberClient Architecture

An ÜberClient is a client that allows a user to access multiple networks at once.
For a file-sharing application, this means that a user can publish a single file on
multiple networks, or perform a search on multiple networks in a single action.

As mentioned earlier, the motivation for designing and implementing the cP2Pc
API is to separate the ÜberClient application’s interface implementation from the
network-specific implementation. In this way, a component that implements the
cP2Pc API can be used by any client that makes use of the API. Likewise, a client
that is written to use the API can make use of any file-sharing network that has a
cP2Pc component.

Figure 1 shows this relationship between the ÜberClient application logic and
the cP2Pc network components. The application part provides the user with a
(graphical) interface to the cP2Pc API functionality. When a user performs an
action on the interface, the application invokes the appropriate functions on (all
or some of) the underlying components. Each component performs the required
function and returns results to the client (through a callback). The client processes
results and presents them to the user.

This figure also shows that the concerns of user interface and P2P network
architecture are clearly separated. With this architecture it is possible for the user
interface and the network components run on separate computers (communicating
through XML-RPC, for example) as shown in Figure 2(a). Given such a separation,
it is also possible that multiple interfaces make use of the same cP2Pc network

4



XML-RPC

XML-RPCXML-RPCXML-RPC

CP2PC User Application

PublishPublishPublish

Publish

Publish Publish Publish

GDN NetworkGnutella
Network

CP2PC API CP2PC API CP2PC API

Freenet Network

XML-RPCXML-RPC

XML-RPC

CP2PC User Application

Download

Publish Download

Publish

CP2PC User Application

Gnutella

CP2PC API

Network

(a) (b)

Figure 2: (a) Remote access; (b) Multiple interfaces.

component as shown in Figure 2(b).

The cP2Pc client

Besides implementing a number of cP2Pc network components, we have also im-
plemented a cP2Pc ÜberClient GUI. Currently the GUI uses the Gnutella and GDN
components described above.

Figure 3 shows screenshots of the ÜberClient in action. It shows the publish
screen and the search screen. Note, in particular, that a user can choose which
networks to publish or search on. By default all networks are selected.

Note that GDN and Gnutella networks are technically very different. For ex-
ample, publishing a file on GDN requires the file to be uploaded to a remote object,
while a file published on Gnutella remains on the local machine. All of these dif-
ferences are hidden by the API and are not visible to the client or the user.

The software is written in Java and runs on the major Unix platforms. We
have not tested Windows compatibility. As part of the software we also provide an
infrastructure that simplifies the writing of compatible network components. It is
our desire that many more compatible back-ends be created (either by us or other
developers) to broaden the scope of integration made possible by cP2Pc.

5



Figure 3: A screenshot for (a) publishing and (b) searching for data.

Future directions

Although we have created a client for integrating pure file-sharing networks the
file-sharing model can be applied to many different kinds of applications where
data is distributed. For example the API could be use to integrate various news-
distribution networks. It could also be used to create clients for file storage net-
works (distributed file sharing). All that would be required would be appropriate
back-ends and a single front end.

An interesting issue to look into further is whether the cP2Pc API could be
used to create unifying gateways, as also suggested by Wiley [6]. It is likely that
the cP2Pc API as it currently stands is not sufficient for this task. However, the
API would probably require only minor modifications to make it appropriate for
gateway functionality.

SIDEBAR: Some P2P Networks

Gnutella [5] is a decentralized P2P file-sharing network. It allows local files to
be shared with other users and also provides a decentralized mechanism to search
for files shared by other users. When performing a search, query messages are
broadcast to all peers within a maximum path radius (determined by a message’s
time-to-live value). A node receiving an incoming search message checks if any
of its shared files can satisfy the search query. If so, information about that file is
returned back to the originator of the query. Files are downloaded directly from the
peer hosting it using HTTP.

Freenet [3] is a P2P network which aims to provide a way to publish and obtain
information on the Internet without fear of censorship. In Freenet files are stored
and replicated on various nodes in the network. Files stored in the network are
identified by a location-independent globally unique identifier (GUID). To retrieve
a file a search for the given GUID is propagated through the network. Once a node
hosting a file with this identifier is found, the file is propagated back through the
network to the original requester. Nodes through which the request and reply are

6



propagated also store a copy of the file. In this way popular files (i.e., those that
are requested often) become more widely replicated than unpopular files. Freenet
does not offer an explicit way to delete files, although unpopular files (i.e., those
that are rarely requested) will eventually disappear from the network.

The Globe Distribution network (GDN) [2, 1] is a network for distribution of
freely distributable software, developed by the Vrije Universiteit, Amsterdam and
the NLNet Foundation. GDN is based on Globe distributed shared objects. Each
object represents a software package and stores all the files contained in that pack-
age. A GDN object provides clients with an interface which allows files to be
added, listed and removed. GDN also provides mechanisms to ensure that abusers
of the GDN network (for example, those publishing non-freely distributable con-
tent) can be tracked and denied access to the network.

The Cooperative File System (CFS) [4] is a distributed file system based on
the Chord distributed hash lookup technology developed at MIT. In CFS files are
divided into blocks and blocks are distributed (and replicated) among available
peers. The blocks are identified by hash values and these hash values are indexed
in internal file system tables. retrieving a particular block requires using the Chord
lookup technology to find a node that stores the particular block and retrieving it
from that node. CFS is accessed as a regular file system using operating system
system calls. As such, regular tools such as cp, ls, etc. can be used to access files
in CFS.

References

[1] A. Bakker, I. Kuz, M. van Steen, A. Tanenbaum, and P. Verkaik. “Global
Distribution of Free Software (and other things).” In Proc. SANE 2002, May
2002. NLUUG.

[2] A. Bakker. An Object-Based Software Distribution Network. PhD thesis, Vrije
Universiteit Amsterdam, Dec. 2002.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. “Freenet: A Distributed Anony-
mous Information Storage Service.” In H. Federrath, (ed.), Designing Privacy
Enhancing Technologies, volume 2009 of Lecture Notes on Computer Science,
pp. 46–66. Springer-Verlag, Berlin, 2001.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. “Wide-area Co-
operative Storage with CFS.” In Proc. 18th Symposium on Operating System
Principles, Oct. 2001. ACM.

[5] G. Kan. “Gnutella.” In A. Oram, (ed.), Peer-to-Peer: Harnessing the Power
of Disruptive Technologies, pp. 94–122. O’Reilly & Associates, Sebastopol,
CA., 2001.

[6] B. Wiley. “Interoperability Through Gateways.” In A. Oram, (ed.), Peer-
to-Peer: Harnessing the Power of Disruptive Technologies, pp. 381–397.
O’Reilly & Associates, Sebastopol, CA., 2001.

7


